Chaotic Resonance Theory, a New Approach for Pattern Storage and Retrieval in Neural Networks
نویسندگان
چکیده
A new architecture and methods for information storage in neural networks are presented. Behaving as Adaptive Resonance Theory neural networks, the proposed architecture is based on a different operation principle called Chaos Resonance Theory . According to this theory, standard neural units were replaced with small recurrent neural networks with chaotic dynamics, placed in a two layer architecture. The storage and retrieval of patterns are essentially based on chaos synchronization, and there are very few connections between units and layers, the architecture being attractive for VLSI implementation. Numerical simulations proved the possibility to store high amounts of patterns using relatively few units and synapses, the proposed architecture being also a plausible model for the neuro biological function of memory. The chaotic coding of information could also explain telepathic phenomena.
منابع مشابه
AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملChaotic Genetic Algorithm based on Explicit Memory with a new Strategy for Updating and Retrieval of Memory in Dynamic Environments
Many of the problems considered in optimization and learning assume that solutions exist in a dynamic. Hence, algorithms are required that dynamically adapt with the problem’s conditions and search new conditions. Mostly, utilization of information from the past allows to quickly adapting changes after. This is the idea underlining the use of memory in this field, what involves key design issue...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملThe Assessment of Applying Chaos Theory for Daily Traffic Estimation
Road traffic volumes in intercity roads are generally estimated by probability functions, statistical techniques or meta-heuristic approaches such as artificial neural networks. As the road traffic volumes depend on input variables and mainly road geometrical design, weather conditions, day or night time, weekend or national holidays and so on, these are also estimated by pattern recognition te...
متن کاملبهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کامل